YES 1.707 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule List
  ((nub :: [Ordering ->  [Ordering]) :: [Ordering ->  [Ordering])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] _ []
nub' (x : xsls 
 | x `elem` ls = 
nub' xs ls
 | otherwise = 
x : nub' xs (x : ls)


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule List
  ((nub :: [Ordering ->  [Ordering]) :: [Ordering ->  [Ordering])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] vw []
nub' (x : xsls 
 | x `elem` ls = 
nub' xs ls
 | otherwise = 
x : nub' xs (x : ls)


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
nub' [] vw = []
nub' (x : xsls
 | x `elem` ls
 = nub' xs ls
 | otherwise
 = x : nub' xs (x : ls)

is transformed to
nub' [] vw = nub'3 [] vw
nub' (x : xsls = nub'2 (x : xsls

nub'0 x xs ls True = x : nub' xs (x : ls)

nub'1 x xs ls True = nub' xs ls
nub'1 x xs ls False = nub'0 x xs ls otherwise

nub'2 (x : xsls = nub'1 x xs ls (x `elem` ls)

nub'3 [] vw = []
nub'3 wv ww = nub'2 wv ww

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule List
  ((nub :: [Ordering ->  [Ordering]) :: [Ordering ->  [Ordering])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] vw nub'3 [] vw
nub' (x : xsls nub'2 (x : xs) ls
nub'0 x xs ls True x : nub' xs (x : ls)
nub'1 x xs ls True nub' xs ls
nub'1 x xs ls False nub'0 x xs ls otherwise
nub'2 (x : xsls nub'1 x xs ls (x `elem` ls)
nub'3 [] vw []
nub'3 wv ww nub'2 wv ww


module Maybe where
  import qualified List
import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
nub' l []
where 
nub' [] vw = nub'3 [] vw
nub' (x : xsls = nub'2 (x : xsls
nub'0 x xs ls True = x : nub' xs (x : ls)
nub'1 x xs ls True = nub' xs ls
nub'1 x xs ls False = nub'0 x xs ls otherwise
nub'2 (x : xsls = nub'1 x xs ls (x `elem` ls)
nub'3 [] vw = []
nub'3 wv ww = nub'2 wv ww

are unpacked to the following functions on top level
nubNub' [] vw = nubNub'3 [] vw
nubNub' (x : xsls = nubNub'2 (x : xsls

nubNub'2 (x : xsls = nubNub'1 x xs ls (x `elem` ls)

nubNub'1 x xs ls True = nubNub' xs ls
nubNub'1 x xs ls False = nubNub'0 x xs ls otherwise

nubNub'3 [] vw = []
nubNub'3 wv ww = nubNub'2 wv ww

nubNub'0 x xs ls True = x : nubNub' xs (x : ls)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ Narrow

mainModule List
  (nub :: [Ordering ->  [Ordering])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l nubNub' l []

  
nubNub' [] vw nubNub'3 [] vw
nubNub' (x : xsls nubNub'2 (x : xs) ls

  
nubNub'0 x xs ls True x : nubNub' xs (x : ls)

  
nubNub'1 x xs ls True nubNub' xs ls
nubNub'1 x xs ls False nubNub'0 x xs ls otherwise

  
nubNub'2 (x : xsls nubNub'1 x xs ls (x `elem` ls)

  
nubNub'3 [] vw []
nubNub'3 wv ww nubNub'2 wv ww


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'10(wx97, wx98, wx99, wx100, True, wx102, bb) → new_nubNub'(wx98, wx99, wx100, bb)
new_nubNub'10(wx97, wx98, wx99, wx100, False, :(wx1020, wx1021), bb) → new_nubNub'1(wx97, wx98, wx99, wx100, wx1020, wx1021, bb)
new_nubNub'11(wx5, wx6, :(wx70, wx71), bd) → new_nubNub'1(wx5, wx6, wx70, wx71, wx70, wx71, bd)
new_nubNub'(:(wx150, wx151), wx16, wx17, bc) → new_nubNub'11(wx150, wx151, :(wx16, wx17), bc)
new_nubNub'10(wx97, wx98, wx99, wx100, False, [], bb) → new_nubNub'(wx98, wx97, :(wx99, wx100), bb)
new_nubNub'11(wx5, wx6, [], bd) → new_nubNub'(wx6, wx5, [], bd)
new_nubNub'1(wx84, wx85, wx86, wx87, wx88, wx89, ba) → new_nubNub'10(wx84, wx85, wx86, wx87, new_esEs(wx84, wx88, ba), wx89, ba)

The TRS R consists of the following rules:

new_esEs(wx84, wx88, app(app(app(ty_@3, cb), cc), cd)) → error([])
new_esEs(wx84, wx88, ty_Double) → error([])
new_esEs(wx84, wx88, ty_Integer) → error([])
new_esEs(LT, LT, ty_Ordering) → True
new_esEs(LT, GT, ty_Ordering) → False
new_esEs(GT, LT, ty_Ordering) → False
new_esEs(wx84, wx88, app(ty_[], be)) → error([])
new_esEs(wx84, wx88, app(app(ty_@2, ce), cf)) → error([])
new_esEs(wx84, wx88, app(ty_Ratio, ca)) → error([])
new_esEs(wx84, wx88, ty_@0) → error([])
new_esEs(wx84, wx88, ty_Char) → error([])
new_esEs(wx84, wx88, ty_Bool) → error([])
new_esEs(LT, EQ, ty_Ordering) → False
new_esEs(EQ, LT, ty_Ordering) → False
new_esEs(wx84, wx88, app(app(ty_Either, bf), bg)) → error([])
new_esEs(wx84, wx88, ty_Float) → error([])
new_esEs(EQ, EQ, ty_Ordering) → True
new_esEs(wx84, wx88, app(ty_Maybe, bh)) → error([])
new_esEs(GT, GT, ty_Ordering) → True
new_esEs(EQ, GT, ty_Ordering) → False
new_esEs(GT, EQ, ty_Ordering) → False
new_esEs(wx84, wx88, ty_Int) → error([])

The set Q consists of the following terms:

new_esEs(x0, x1, ty_Int)
new_esEs(x0, x1, app(app(ty_Either, x2), x3))
new_esEs(x0, x1, ty_Bool)
new_esEs(EQ, EQ, ty_Ordering)
new_esEs(x0, x1, ty_@0)
new_esEs(x0, x1, app(app(ty_@2, x2), x3))
new_esEs(x0, x1, ty_Float)
new_esEs(x0, x1, app(ty_[], x2))
new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs(GT, LT, ty_Ordering)
new_esEs(LT, GT, ty_Ordering)
new_esEs(x0, x1, app(ty_Ratio, x2))
new_esEs(x0, x1, app(ty_Maybe, x2))
new_esEs(x0, x1, ty_Char)
new_esEs(x0, x1, ty_Double)
new_esEs(LT, LT, ty_Ordering)
new_esEs(EQ, GT, ty_Ordering)
new_esEs(GT, EQ, ty_Ordering)
new_esEs(GT, GT, ty_Ordering)
new_esEs(x0, x1, ty_Integer)
new_esEs(LT, EQ, ty_Ordering)
new_esEs(EQ, LT, ty_Ordering)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'10(wx97, wx98, wx99, wx100, True, wx102, bb) → new_nubNub'(wx98, wx99, wx100, bb)
new_nubNub'10(wx97, wx98, wx99, wx100, False, :(wx1020, wx1021), bb) → new_nubNub'1(wx97, wx98, wx99, wx100, wx1020, wx1021, bb)
new_nubNub'11(wx5, wx6, :(wx70, wx71), bd) → new_nubNub'1(wx5, wx6, wx70, wx71, wx70, wx71, bd)
new_nubNub'(:(wx150, wx151), wx16, wx17, bc) → new_nubNub'11(wx150, wx151, :(wx16, wx17), bc)
new_nubNub'10(wx97, wx98, wx99, wx100, False, [], bb) → new_nubNub'(wx98, wx97, :(wx99, wx100), bb)
new_nubNub'1(wx84, wx85, wx86, wx87, wx88, wx89, ba) → new_nubNub'10(wx84, wx85, wx86, wx87, new_esEs(wx84, wx88, ba), wx89, ba)

The TRS R consists of the following rules:

new_esEs(wx84, wx88, app(app(app(ty_@3, cb), cc), cd)) → error([])
new_esEs(wx84, wx88, ty_Double) → error([])
new_esEs(wx84, wx88, ty_Integer) → error([])
new_esEs(LT, LT, ty_Ordering) → True
new_esEs(LT, GT, ty_Ordering) → False
new_esEs(GT, LT, ty_Ordering) → False
new_esEs(wx84, wx88, app(ty_[], be)) → error([])
new_esEs(wx84, wx88, app(app(ty_@2, ce), cf)) → error([])
new_esEs(wx84, wx88, app(ty_Ratio, ca)) → error([])
new_esEs(wx84, wx88, ty_@0) → error([])
new_esEs(wx84, wx88, ty_Char) → error([])
new_esEs(wx84, wx88, ty_Bool) → error([])
new_esEs(LT, EQ, ty_Ordering) → False
new_esEs(EQ, LT, ty_Ordering) → False
new_esEs(wx84, wx88, app(app(ty_Either, bf), bg)) → error([])
new_esEs(wx84, wx88, ty_Float) → error([])
new_esEs(EQ, EQ, ty_Ordering) → True
new_esEs(wx84, wx88, app(ty_Maybe, bh)) → error([])
new_esEs(GT, GT, ty_Ordering) → True
new_esEs(EQ, GT, ty_Ordering) → False
new_esEs(GT, EQ, ty_Ordering) → False
new_esEs(wx84, wx88, ty_Int) → error([])

The set Q consists of the following terms:

new_esEs(x0, x1, ty_Int)
new_esEs(x0, x1, app(app(ty_Either, x2), x3))
new_esEs(x0, x1, ty_Bool)
new_esEs(EQ, EQ, ty_Ordering)
new_esEs(x0, x1, ty_@0)
new_esEs(x0, x1, app(app(ty_@2, x2), x3))
new_esEs(x0, x1, ty_Float)
new_esEs(x0, x1, app(ty_[], x2))
new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs(GT, LT, ty_Ordering)
new_esEs(LT, GT, ty_Ordering)
new_esEs(x0, x1, app(ty_Ratio, x2))
new_esEs(x0, x1, app(ty_Maybe, x2))
new_esEs(x0, x1, ty_Char)
new_esEs(x0, x1, ty_Double)
new_esEs(LT, LT, ty_Ordering)
new_esEs(EQ, GT, ty_Ordering)
new_esEs(GT, EQ, ty_Ordering)
new_esEs(GT, GT, ty_Ordering)
new_esEs(x0, x1, ty_Integer)
new_esEs(LT, EQ, ty_Ordering)
new_esEs(EQ, LT, ty_Ordering)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: